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1  |  INTRODUC TION

The long- term increase in greenness in cold, seasonally snow- 
covered ecosystems is widely perceived as a consequence of climate 
change (Berner et al., 2020; Keenan & Riley, 2018). Arctic and alpine 
ecosystems have undergone particularly fast greening compared to 
other ecosystems and this is consistent with the accelerated warm-
ing documented for these regions (Callaghan et al., 2010; Pepin 
et al., 2015). However, this greening exhibits considerable spatial 

and temporal variability that is far from being understood (Berner 
et al., 2020; Cortés et al., 2021; Ju & Masek, 2016; Myers- Smith 
et al., 2020). The complex interaction between regional climate 
trends, topography, geomorphological and other disturbance re-
gimes and vegetation dynamics contributes to these non- uniform 
patterns of greening (Ropars & Boudreau, 2012; Tape et al., 2012). 
Further studies are required to document the relative contribution 
of these drivers and to advance a more predictive understanding of 
greening and its consequences on ecosystem processes and services 
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Abstract
The long- term increase in satellite- based proxies of vegetation cover is a well- documented 
response of seasonally snow- covered ecosystems to climate warming. However, ob-
served greening trends are far from uniform, and substantial uncertainty remains 
concerning the underlying causes of this spatial variability. Here, we processed sur-
face reflectance of the moderate resolution imaging spectroradiometer (MODIS) to 
investigate trends and drivers of changes in the annual peak values of the Normalized 
Difference Vegetation Index (NDVI). Our study focuses on above- treeline ecosys-
tems in the European Alps. NDVI changes in these ecosystems are highly sensitive to 
land cover and biomass changes and are marginally affected by anthropogenic distur-
bances. We observed widespread greening for the 2000– 2020 period, a pattern that 
is consistent with the overall increase in summer temperature. At the local scale, the 
spatial variability of greening was mainly due to the preferential response of north- 
facing slopes between 1900 and 2400 m. Using high- resolution imagery, we noticed 
that the presence of screes and outcrops locally magnified this response. At the re-
gional scale, we identified hotspots of greening where vegetation cover is sparser 
than expected given the elevation and exposure. Most of these hotspots experienced 
delayed snow melt and green- up dates in recent years. We conclude that the ongoing 
greening in the Alps primarily reflects the high responsiveness of sparsely vegetated 
ecosystems that are able to benefit the most from temperature and water- related 
habitat amelioration above treeline.
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(Duveiller et al., 2018; Forzieri et al., 2017; Myers- Smith et al., 2020; 
Zhu et al., 2016).

Temperate mountains have experienced warmer summers over 
the last decades (Beniston, 2006; Hock et al., 2019). Several studies 
have underlined the impact of these changes on land surface phe-
nology (Asam et al., 2018; Dunn & de Beurs, 2011; Xie et al., 2020; 
Zhang et al., 2013), ecosystem productivity (Choler, 2015; Jolly et al., 
2005) and species richness (Lamprecht et al., 2018; Steinbauer et al., 
2018). Other studies reported on the long- term increase in green-
ness in the south- western Alps (Carlson et al., 2017; Filippa et al., 
2019), the Hindu Kush (Anderson et al., 2020) and underlined the 
particular responsiveness of sparsely vegetated areas located in the 
nival belt. However, none of these studies has provided a compre-
hensive analysis of the spatial variability of greening at the mountain 
range scale and an investigation of its determinants. More specifi-
cally, the distinction between exposure to change (e.g. climate) and 
the responsiveness of ecosystems to change has remained elusive. 
Yet, well- documented case studies in the Arctic suggest that this 
fundamental question may underpin much of the observed spatial 
complexity of greening. For example, the preferential expansion of 
arctic shrubs in particular topographical situations, such as along 
streams or in floodplains, led to local- scale greening heterogeneity 
(Tape et al., 2006), which in turn is possibly related to the snow- 
holding capacity of shrubs in winter (Sturm et al., 2005). The initial 
cover of Betula glandulosa in the 1950s explained part of the spatial 
variability of greening in Nunavik (Ropars & Boudreau, 2012; Ropars 
et al., 2015). These studies pointed out that land cover properties 
are pivotal to predict the responsiveness of the system to ongoing 
changes and to identify the underlying ecological mechanisms of 
greening.

There is a growing body of evidence showing that mountain eco-
systems of the Alps have undergone rapid changes in response to cli-
mate warming (Gottfried et al., 2012). Plot- based long- term surveys 
revealed increasing vegetation cover in mountain grasslands, mainly 
due to the expansion of graminoids (Rogora et al., 2018) and a colo-
nization of screes and outcrops by shrubs and trees (Vittoz, Bodin, 
et al., 2008). While these studies are invaluable to inform on ecolog-
ical mechanisms underpinning ecological changes, their paucity pre-
cludes tracking complex, non- linear responses along topographical, 
geomorphological and climate gradients. For example, winter snow 
duration— which is widely acknowledged as a key driver of vegetation 
dynamics— for the time being shows decreased sensitivity to global 
warming at elevations above 2000 m (Hantel & Hirtl- Wielke, 2007; 
Schoener et al., 2019). Another issue is the over- representation of 
high summits in plot- based surveys, considering that the area they 
cover represents a minute fraction of above- treeline habitats. For 
these reasons, remote sensing offers a complementary approach to 
probe ongoing land cover changes at a scale encompassing multiple 
environmental gradients and to examine their impacts on ecosystem 
services such as water provisioning, carbon sequestration or pasto-
ral resources.

Here, we exploit available time series of the moderate resolution 
imaging spectroradiometer (MODIS) to provide a comprehensive 

picture of recent greening and its spatial variability in the European 
Alps and to improve our understanding of its drivers. Our study uti-
lizes annual peak values of the Normalized Difference Vegetation 
Index (NDVI) as a proxy of land surface greenness (Tucker, 1979). 
We quantified the significance and magnitude of NDVI trends for 
high- elevation ecosystems that are located between the treeline 
and the permanent snowline. This allows us to overcome two po-
tential issues in such remote sensing studies. First, high- elevation 
ecosystems are less affected by anthropogenic disturbances than 
other European habitats at lower elevation, which should facilitate 
the unravelling of a climate signal on greening trends (Filippa et al., 
2019; Gehrig- Fasel et al., 2007). Second, the NDVI range of these 
ecosystems lies in a range where it is highly sensitive to land cover 
and biomass changes, in contrast to closed canopies where NDVI 
no longer linearly depends on biomass or plant cover (Huete et al., 
2002; Myneni & Williams, 1994).

We addressed the three following questions:

1. How widespread is the greening signal in above- treeline eco-
systems of the European Alps?

2. Is the variability of greening spatially structured and what are its 
main drivers?

3. Are there fine- scale land cover features that predispose to fast 
greening response?

2  |  MATERIAL AND METHODS

2.1  |  Study area and selection of pixels

The European Alps stretch over 1200 km from Nice (France) to 
Vienna (Austria). Our study focuses on the uplands of the massif that 
are located between the treeline and the permanent snowline. This 
area includes shrublands, grasslands and sparsely vegetated ecosys-
tems established on screes, debris and outcrops. We first selected 
a set of 250- m resolution MODIS pixels having non- forested land 
cover classes with a tree cover density below 5%, an elevation above 
1400 m and an average NDVImax above 0.15. To do so, we relied 
on a 25- m resolution Digital Elevation Model, a 100- m resolution 
Tree Cover Density map for the year 2018 (https://land.coper nicus.
eu/pan- europ ean/high- resol ution - layer s/fores ts/tree- cover - densi 
ty/) and the Corine Land Cover (CLC) product for 2018 (https://land.
coper nicus.eu/pan- europ ean/corin e- land- cover/), which is based on 
the visual photointerpretation of aerial images at a 100- m resolu-
tion. From the 44 CLC entries at level 3, we retained the following 
classes: Pastures (code 2.3.1), Natural grasslands (code 3.2.1), Moors 
and heathlands (code 3.2.2), Bare Rocks (code 3.3.2) and Sparsely 
vegetated (code 3.3.3). We merged pastures and grasslands, and we 
renamed the misleading ‘bare rocks’ to ‘very sparsely vegetated’ as 
we selected pixels with an average NDVImax above 0.15, that were 
not completely devoid of vegetation. We discarded pixels exhibit-
ing more than 10% of settlements (ski resorts) or permanent water 
using data layers of European settlements (https://land.coper nicus.

https://land.copernicus.eu/pan-european/high-resolution-layers/forests/tree-cover-density/
https://land.copernicus.eu/pan-european/high-resolution-layers/forests/tree-cover-density/
https://land.copernicus.eu/pan-european/high-resolution-layers/forests/tree-cover-density/
https://land.copernicus.eu/pan-european/corine-land-cover/
https://land.copernicus.eu/pan-european/corine-land-cover/
https://land.copernicus.eu/pan-european/GHSL/european-settlement-map/
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eu/pan- europ ean/GHSL/europ ean- settl ement - map/) and of perma-
nent water (https://land.coper nicus.eu/pan- europ ean/high- resol 
ution - layer s/water - wetne ss/statu s- maps/water - wetne ss- 2018). We 
also removed pixels for which we found significant abrupt changes 
of NDVImax within the period 2000– 2020, as this might be indica-
tive of a physical or anthropogenic disturbance unrelated to climate 
trend. This was done by using the Breaks For Additive Seasonal and 
Trend (BFAST) on 8- day NDVI time series. Breaks were identified 
after the time- series decomposition into trend, seasonal and remain-
der component. Abrupt changes were considered as break points 
when their uncertainty was found to be smaller than 1 year, con-
sistent to a previous study in the south- western Alps (Filippa et al., 
2019). This led to discard around 5% of the total number of pixels. 
We ended up with 511,375 pixels of which 284,346 (55.6%) exhib-
ited an average NDVImax below 0.65. Our main findings are based on 
this data subset to avoid the saturation effect of NDVImax for closed 
canopies (see Section 1; Figure S2). Figure S3 and Table S1 give the 
spatial distribution of these pixels and their breakdown by adminis-
trative units using the Nomenclature of territorial units for statis-
tics (NUTS) classification at level 3 (https://ec.europa.eu/euros tat/
web/gisco/ geoda ta/refer ence- data/admin istra tive- units - stati stica l-   
units/). Figure S12 shows the distribution of pixels for elevation and 
diurnal anisotropic heating (DAH) classes. We processed all spatial 
data using the raster, rgdal, sp and proj4 R packages (Venables & 
Ripley, 2002). We used the bfast R package to implement the BFAST 
analysis (Verbesselt et al., 2010).

2.2  |  Estimates of MODIS- derived NDVI metrics

We downloaded the 250- m resolution 8- day composite of 
MOD09Q1/Terra collection 6 products that are available in hdf 
format at the Land Processes Distributed Active Archive Center 
(https://e4ftl 01.cr.usgs.gov/). Acquired dates covered the period 
from 18 February 2000 to 27 December 2020. We assembled the 
tiles h18.v4 and h19v04 in order to cover the entire massif and re- 
projected red and near- infrared (NIR) surface reflectance values (ρ) 
in the EPSG 3035 geometry. We retained reflectance values pro-
duced with high quality (according to the MOD09Q1 Quality Control 
flag) and calculated a NDVI according to (ρNIR − ρRED)/(ρNIR + ρRED), 
where ρ is the reflectance. We did not to use the 500- m- resolution 
16- day composite BRDF- corrected MODIS products (MCD43A4) 
as we needed a higher temporal and spatial resolution to best cap-
ture changes in peak NDVI during the short growing season above 
treeline. Raw NDVI time series were processed in two steps. First, 
we used the Best Index Slope Extraction algorithm to reduce the 
noise of the NDVI time series (Viovy et al., 1992) with the param-
eters: n = 0.2 (i.e. a 20% acceptable difference in NDVI values within 
the sliding period) and p = 3 (the length of the forward sliding pe-
riod). Second, we applied a low- pass filter using the Savitzky– Golay 
algorithm (Savitzky & Golay, 1964) with the following parameters: 
n = 3 (the filter order) and p = 7 (the filter length). Smaller values of 
p would allow keeping track of more rapid changes, whereas higher 

values would increase the smoothing. We also estimated a green- up 
date as the first date of the year where the NDVI reached 50% of the 
NDVImax. This was achieved using daily- interpolated time series of 
NDVI. Green- up date is highly correlated with snow melt- out timing 
in the high- elevation mountain grasslands of the Alps (Choler, 2015; 
Fontana et al., 2008). We used the non- parametric, rank based, 
Mann– Kendall (MK) monotonic test to assess the significance of 
NDVI time- series trends. The significance was given by the approxi-
mately normally distributed z score with z values > 1.96 indicating 
a significant increase (p < .05) and z values < −1.96 a significant de-
crease (at p < .05). To quantify change over the period 2000– 2020, 
we fitted linear models based on Theil– Sen single median slope. The 
Theil– Sen estimator of the linear trend is much less sensitive to out-
liers than the least squares estimator. The distribution of NDVImax 
slopes for the different ranges of NDVImax values is shown in Figure 
S2. Decreasing slope values in the highest ranges of NDVImax were 
clearly indicative of a saturation effect. For further analyses, we 
retained pixels with an NDVImax value between 0.15 and 0.65. In 
this range, the pairwise mean difference of greenness slopes was 
below 0.005 (Figure S2). We randomly perturbed the RED and NIR 
raw reflectance by up to ±5% to and recalculated 1000 times the 
MK trends and the Theil– Sen slopes for all pixels. The uncertainty of 
MODIS reflectance, and therefore of vegetation indices, arises from 
sensor calibration and the different steps of atmospheric correction 
(Vermote & Vermeulen, 1999). A perturbation of 5% lies in the upper 
range of the uncertainties associated with MODIS products (Miura 
et al., 2000). Our numerical simulation propagates this uncertainty 
into the estimates of NDVI trends and ensures a more robust analysis 
of the drivers of greening using random forest. We used the Kendall 
R package for estimating MK trends (McLeod, 2005) and the signal R 
package for the Savitzky– Golay function (Signal Developers, 2013).

2.3  |  Preparation of predictor data sets

We estimated terrain indices from the 25- m resolution European 
Digital Elevation Model (EU- DEM, version 1.0; https://land.coper 
nicus.eu/image ry- in- situ/eu- dem/). We resampled the EU- DEM to 
250- m resolution and calculated the mean, range and standard de-
viation of elevation and the DAH. The DAH index approximates the 
anisotropic heating of land surface to radiation (Böhner & Antonić, 
2009). We computed DAH as cos(αmax − α) arctan(β), where α is the 
aspect, β is the slope and the parameter αmax corresponds to the 
aspect with the maximum total heat surplus. We used αmax = 212° 
as we noticed that this SSW orientation corresponds on average to 
the earliest first snow- free day derived from Sentinel- 2 products in 
the south- western Alps (unpublished results). Bedrock data were ex-
tracted from the 1:1 million OneGeology pan- European harmonized 
surface geological maps distributed by the European Geological Data 
Infrastructure portal (http://www.europ e- geolo gy.eu/). Surface ge-
ological units were aggregated into four categories: (i) igneous and 
metamorphic rocks including granite, gneiss etc.; (ii) ferromagnesian 
rocks including serpentines, amphibolite, andesite, basalt etc.; (iii) 

https://land.copernicus.eu/pan-european/GHSL/european-settlement-map/
https://land.copernicus.eu/pan-european/high-resolution-layers/water-wetness/status-maps/water-wetness-2018
https://land.copernicus.eu/pan-european/high-resolution-layers/water-wetness/status-maps/water-wetness-2018
https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units/
https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units/
https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units/
https://e4ftl01.cr.usgs.gov/
https://land.copernicus.eu/imagery-in-situ/eu-dem/
https://land.copernicus.eu/imagery-in-situ/eu-dem/
http://www.europe-geology.eu/
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hard sedimentary rocks including dolomite, limestone etc; and (iv) 
clastic sedimentary rocks including schist, mudstone, shale, flysch 
etc. For climate trends, we used the daily- based gridded data sets 
of E- OBS at a 0.1° resolution for the period 1995 onwards (version 
E- OBS v22.0e; https://surfo bs.clima te.coper nicus.eu/dataa ccess/ 
access_eobs.php) (Cornes et al., 2018). For each year, we calculated 
growing degree days (GDD) as the cumulative sum of daily average 
air temperature above 0°C during the summer months (June, July 
and August). As a complementary estimate of summer warming, 
we also extracted the average of daily maximum temperatures in 
July (T07). We computed a climatic water balance as the difference 
between precipitation (P) and a reference crop evapotranspiration 
ET0. We summed the P- ET0 difference over the summer months to 
assess the dry– wet conditions of the growing season. ET0 was es-
timated on a daily basis using the equation λET0 = C (Δ/Δ + γ) Q, 
where Q is the global radiation (MJ m−2 day−1), Δ is the slope of the 
vapour pressure– temperature curve (kPa°C−1), γ is the psychometric 
constant (kPa°C−1), λ is the latent heat of vaporization (MJ kg−1) and 
C is an empirical coefficient (C = 0.65). This is a simplified version 
of the Penman– Monteith equation originally proposed by Makkink 
and later modified by Hansen (1984). Maps of climate predictors are 
shown in Figures S9 and S10. For snow cover duration trends in the 
French Alps (Figure S11), we used the S2M meteorological and snow 
cover re- analysis for the period 1959– 2019 (https://www.aeris - data.
fr/catal ogue/; Vernay et al., 2019). As for NDVI time series, we used 
the non- parametric MK monotonic test and the Theil– Sen median 
slope to assess the significance and the magnitude of decadal trends 
for all meteorological variables.

2.3.1  |  Random forest analysis

We implemented a random forest analysis to identify the best pre-
dictors of the spatial variability of greening. Based on the MK sig-
nificance tests, we classified the greenness trends into the following 
three categories: no significant greening (p > .005), moderate green-
ing (.005 < p < .05) and strong greening p < .005). There were not 
enough pixels exhibiting browning to include this response in the 
analysis. We randomly sampled 15,000 pixels in each category to 
balance the sample size among the greening responses and parti-
tioned the data set into a model training subset (two thirds of pix-
els) and a model evaluation subset (one third of pixels). We repeated 
this procedure 1000 times, meaning that we assembled one random 
data set for each perturbed simulation of MODIS reflectance and 
implemented one random forest model for each data set. Predictor 
variables included elevation, DAH, bedrock, NDVImax anomaly and 
decadal trends for the green- up date, and the climate variables in-
cluded GDD and P- ET0. We calculated pairwise correlations between 
predictors and checked that they were not highly correlated, that is 
r < .5 (Figure S13). We also implemented a random forest model in-
cluding NDVImax to check for its influence on the classification prob-
ability and to further document the saturation effect (Figure S6). We 
relied on the out- of- bag classification accuracy to select the best 

random forest model. We assessed predictor importance using the 
mean decrease in accuracy metric, which is indicative of the suit-
ability of a predictor, and the mean decrease in Gini, which is indica-
tive of the homogeneity of nodes and leaves. Predictor importance 
was based on a permutation- based importance measure, where one 
measures the effect of reshuffling each predictor on model accu-
racy. Last, we examined how classification probabilities depend on 
the values taken by each predictor by computing partial dependence 
plots. We computed empirical cumulative distribution function to 
determine the range of values where interpretation of partial de-
pendence plots needs caution due to small sample size. We used the 
randomForest, caret and pdp R packages to implement random for-
est models and evaluate their performance (Greenwell, 2017; Kuhn, 
2020; Liaw & Wiener, 2002).

2.3.2  |  Land cover assessment using very high- 
resolution imagery

Using the high- resolution imagery of Google Earth, we characterized 
the land cover features of a selection of 300 500 × 500 m cells. First, 
we aggregated NDVImax anomaly at a 500- m resolution. Then we 
performed a stratified random sampling of pixels using three classes 
of NDVImax anomaly— negative, around zero and positive values— 
and 100 pixels in each class (Figure S7). The visual photointerpreta-
tion of very high- resolution imagery from Google Earth allows us to 
distinguish the following six types of object: singular trees or tree 
patches, tall shrubs or shrublands (mainly composed of Pinus mugo), 
low shrublands (presumably Ericaceae- dominated), grasslands, 
screes and debris and finally outcrops. We assigned a percentage 
cover to these classes using the semi- quantitative ranges: <5%, 5%– 
25%, 25%– 50%, 50%– 75% and 75%– 100%. Three authors of this 
study (PC, EC and GF) conducted the photointerpretation indepen-
dently and we retained the most frequent cover estimate for each 
land cover class. We did not try to standardize the year of satellite 
view, as there were no sufficient good quality images to do it.

3  |  RESULTS

Over the 2000– 2020 period, we found significant (p < .05) positive 
temporal trends in NDVImax for 56% of the 284,346 analysed pix-
els and significant negative trends for <0.1% of all pixels (Figure 1a; 
Table S1). Irrespective of significance, the ratio between positive 
and negative slopes was 26/1. These results were robust to uncer-
tainty in MODIS data, as more than two thirds of the pixels classified 
as fast (p < .005) and non- significant greening (p > .05) remained 
in these two classes when reflectance values were randomly per-
turbed (Figure S1). Sparse and very sparse vegetation contributed 
to 23% and 26%, respectively, of the 56% of significant greening 
compared to 7% for grasslands and heathlands (Figure 1b). Figure 
S2 shows that there was no strong effect of the average NDVImax 
on the magnitude of greening in the selected range (0.15– 0.65). By 

https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php
https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php
https://www.aeris-data.fr/catalogue/
https://www.aeris-data.fr/catalogue/
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F I G U R E  1  Sign and magnitude of greenness trends in above- treeline ecosystems of European Alps. (a) Frequency distribution of linear 
trends in NDVImax for the 2000– 2020 period. Slopes were estimated using the Theil– Sen median slope analysis. Levels of significance were 
assessed by a non- parametric, rank based, Mann– Kendall monotonic test. Positive values correspond to greening, while negative values 
represent browning trends. The analysis was performed on 284,546 pixels at 250- m resolution. (b) Greenness trends by land cover class, 
based on the European- scale product Corine Land Cover (CLC). Note that the CLC class ‘bare rocks’ was renamed ‘very sparsely vegetated’ 
as the average NDVImax of selected pixels was above 0.15. Note the highly contrasting scale for positive and negative trends. NDVI, 
Normalized Difference Vegetation Index

F I G U R E  2  Spatial distribution of greenness trends. For visual clarity, we applied a 5 × 5 pixels moving window to the original 250- m 
resolution map. The colour scale represents the percentage of pixels showing significant greening (p < .05) over the 2000– 2020 period. 
The bold line indicates the boundaries of the European Alps, whose general location is shown in the upper left insert. The lower right insert 
highlights regional hotspots of greening by aggregating the 250- m resolution map to 2.75 km and by colouring pixels for which more than 
80% of the 250- m pixels exhibited fast greening (p < .005)
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contrast, there was a marked decline in greening for higher values of 
NDVImax suggesting a saturation effect (Figure S2; Table S1). Only 
31% of pixels exhibited a significant greening when the NDVImax 
value was above 0.65 (Table S1).

Although widely distributed, the greening trends are not spatially 
uniform (Figure 2). We found a regional- scale component of this spa-
tial variability, with hotspots of greening corresponding to southern 
parts of the French Alps (e.g. Haute- Provence and Maritime Alps, 
France), the southern part of the Central Alps (e.g. Sondrio, Italy and 
Tiroler Oberland, Austria) and the north- easternmost part of the 
Alps (e.g. Pinzgau- Pongau, Austria; Figure 2; Figure S3; Table S1). 
At the local scale, topographical factors also modulate observed 
greening trends (Figure 3a). First, there is a general tendency for 
the greening to increase with elevation (Figure 3a). Second, and on 
top of that, the greening is more noticeable on steep north- facing 
slopes, that is, for the most negative values of DAH (Figure 3a). 
Consequently, we observed an overall upward shift of the isolines 
of NDVImax, meaning that the elevation of given value of NDVImax 
has increased steadily over the last two decades (Figure 3b). We es-
timated the median of this shift at 45 m per decade with strong re-
gional disparities (Figure S4). It is worth noting that the magnitude of 
this elevational shift is higher for the first deciles of the distribution 
than for the last, and this difference is particularly striking at nega-
tive DAH values (Figure 3b). These results point out that greening is 
enhanced when the NDVImax is below the median of the distribution 
for a given elevation and DAH, leading to a reduction of the inter-
decile differences in the distribution of NDVImax along topographical 
gradients (Figure 3b).

These findings prompted us to quantify a per- pixel NDVImax 
anomaly and to assess its spatial distribution in the European Alps. 
The anomaly was calculated as the difference between the average 
NDVImax of a given pixel and the median NDVImax value of all pixels 
lying in the same class of DAH and elevation (Figure 4a). Negative 
anomalies are indicative of an ‘abnormally’ low NDVImax value with 
respect to elevation and DAH. The mapping of this anomaly revealed 
a clear regional- scale variability that was partly congruent with that 
of greening (Figure 4b). For example, the southern part of the French 
Alps, part of the south Central Alps and the north- easternmost Alps 
are regions that present a combination of fast greening (Figure 2), 
negative NDVImax anomalies (Figure 4b) and high upward shift of 
NDVImax (Figure S4).

We evaluated the importance of this NDVImax anomaly in pre-
dicting the observed greening trends against two sets of predictors 
that are more widely used in greening studies, that is topographical 
predictors (elevation and DAH) and climate predictors pertaining to 
the growing season (summer). We used trends in the accumulation 
of GDD during summer as a proxy of temperature- related changes 
and trends in the difference between precipitation and potential 
evapotranspiration as a proxy of water balance- related changes (see 
Section 2). We also estimated trends in the green- up date derived 
from the analysis of NDVI time series. Previous studies showed 
that the green- up date strongly depends on snow cover duration 
in high- elevation temperate ecosystems (Choler, 2015). We built a 
random forest model to assess the usefulness of these variables for 
classifying pixels into three categories based on the MK significance 
test— no greening (p > .05), moderate greening (p < .05) and fast 

F I G U R E  3  Variation of greenness trends along gradients of elevation and diurnal anisotropic heating (DAH). (a) Heat map of the mean 
value of NDVImax slopes per class of elevation and DAH. Only combinations representing more than 5% of the total number of pixels are 
shown. (b) Elevational distribution of three ranges of NDVImax as a function of DAH. Lines indicate the second decile, the median and the 
eighth decile of the distribution. Average NDVImax values are shown for three 10- year moving windows. NDVI, Normalized Difference 
Vegetation Index
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greening (p < .005). The model classified the ‘no greening’ and the 
‘fast greening’ classes with an accuracy of 61.5% and 62%, respec-
tively, corresponding to a kappa of .42 and .4 (Table S3). The values 
of the first and ninth deciles of the 1000 simulations differ by <2% 
from the mean. The performance of the random forest classifier for 
the ‘moderate greening’ was low with an overall accuracy of 0.51 to 
be compared to a random accuracy of 0.33 (Table S3).

The ranking of predictors shows that the NDVImax anomaly is as 
important as climate predictors (Figure 5a,b). Noticeably, its score is 
high for both the mean decrease accuracy and the mean decrease 
in Gini coefficient, indicating a high suitability as a predictor and a 
high contribution to the homogeneity of nodes and leaves. By con-
trast, climate predictors show high decrease in permutation tests 
but do not exhibit a high contribution to the purity of nodes (low 
mean decrease in Gini), while topographical predictors show the re-
verse trend (Figure 5b). The greening trends did not change between 
bedrock types (Figure S5) and bedrock exhibited a very low variable 
importance in random forest. For these reasons, it was not retained 
in further analysis. Partial dependence plots (Figure 5c) reveal that 
greening was mostly associated with negative NDVImax anomalies, 
negative DAH, elevation between 2300 and 2700 m and increas-
ing green- up dates, and were marginally enhanced by a more pos-
itive trend in GDD and water balance. The lack of greening occurs 
more often at low and very high elevation, where NDVImax anomaly 
was positive and green- up dates decrease and, to a lesser extent, 
where climate amelioration was weak (Figure 5c). Given the positive 
correlation between snow melt- out date and green- up date above 
treeline, our results indirectly point to a positive effect of delayed 

snow melt on the recent greening trends. We also implemented 
complementary random forest models for subsets of pixels lying in 
narrower ranges of NDVImax (0.15– 0.4 and 0.4– 0.65) and by adding 
NDVImax as a supplementary predictor (Figure S6). The ranking of 
variable importance was consistent for all these simulations, which 
also confirmed the overwhelming importance of the NDVImax anom-
aly for predicting the greening response whatever the NDVImax value 
(Figure S6). They also pointed out that adding the NDVImax as a sup-
plementary predictor tends to lower the importance of the NDVImax 
anomaly (Figure 5a; Figure S6a), which is explainable by the positive 
correlation between these two variables.

The strong link between negative NDVImax anomalies and sig-
nificant greening trends led us to explore at a finer scale the land 
cover features associated with these contexts. Using very high- 
resolution satellite imagery from Google Earth, we performed a vi-
sual photointerpretation of 300 randomly selected sites across the 
Alps (Figure S7). First, this analysis indicated that NDVImax anomalies 
were consistently negative in the case of high cover of screes, debris 
and outcrops (Figure 6a). The reverse trend holds for grassland cover 
(Figure 6c). Second, the magnitude of greening tends to increase 
with the cover of screes and debris and decreases with that of grass-
lands (Figure 6b,d). Last, we did not find evidence that the presence 
of nearby trees or tall shrubs was associated with more frequent 
greening, suggesting that the densification of non- woody vegetation 
is as important as the upward shit of trees to explain greening. This 
is illustrated by four examples of land cover dynamics using past and 
current very high- resolution colour- infrared aerial photographs that 
are available for the French Alps (Figure S8).

F I G U R E  4  Anomalies of NDVImax. (a) An example of the variation of NDVImax relative to elevation for DAH values in the −0.25 to −0.2 
interval. NDVImax values are averages for the 2000– 2020 period. Black lines indicate the first, the fifth (median) and the ninth deciles of 
the distribution. The colour palette from brown to green expresses the NDVImax anomaly, that is the difference between NDVImax and the 
median value of the corresponding elevation × DAH combination. (b) Spatial distribution of the NDVImax anomaly in the European Alps. For 
visual clarity, we applied a 5 × 5 moving window to the original 250- m resolution map. DAH, diurnal anisotropic heating; NDVI, Normalized 
Difference Vegetation Index
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4  |  DISCUSSION

The main findings of our study are threefold. First, more than half 
of the land surface occupied by above- treeline ecosystems in the 

European Alps has experienced significant greening over the last 
two decades. By contrast, the number of pixels showing significant 
browning trends is <1%. Second, this widespread greening is spa-
tially non- uniform, and fast greening responses can be explained by a 

F I G U R E  5  Predictors of greenness trends. We classified pixels into three categories— no greening, moderate greening (.005 < p < .05) 
and fast greening (p < .005)— and implemented a random forest model to assess the importance of predictors. (a) Predictor efficacy for 
classification measured by the mean accuracy decrease in classification following permutation of variables. (b) Contribution of a predictor to 
the purity of nodes measured by the decrease in the Gini coefficient. (c) Partial dependency analyses showing the classification probability 
as a function of the predictor values. We created 1000 perturbed data sets of MODIS reflectance for the 284,346 pixels and then randomly 
selected 30,000 pixels in each data set. These subsets of pixels were split into training (66%) and validation (33%) to implement the random 
forest model. Envelopes show the first and ninth deciles of the predicted distribution. DAH, diurnal anisotropic heating; GDD, growing 
degree days; NDVI, Normalized Difference Vegetation Index



    |  9CHOLER Et aL.

combination of local- scale factors— that is, elevation and exposure— 
and regional- scale factors pertaining to anomalies of NDVImax and 
trends in green- up dates. Third, we provided substantial evidence 
for the high responsiveness of north- facing and sparsely vegetated 
areas that have clearly benefited the most from recent climate 
changes in the European Alps.

Our study investigated greening trends across a vast and highly 
heterogeneous landscape. Above- treeline ecosystems in the Alps 
include a wide range of geomorphological, topographical and eco-
logical situations that lead to a high turnover of plant communities 
over short distances. This fine- scale heterogeneity in plant cover 
inevitably calls into question the appropriateness of using moder-
ate resolution remote sensing products to assess greening trends 
in mountainous landscapes. For example, it is entirely possible 
that contrasting trends in greenness are occurring within a 250- m 
resolution pixel because of habitat- specific responses (Matteodo 
et al., 2016). While the use of moderate resolution remote sensing 
products certainly limits our ability to assign specific NDVImax tra-
jectories to particular plant communities or habitats, our approach 
nonetheless provides a very valuable and comprehensive picture of 
vegetation shifts at the mountain range scale, and enables broad- 
scale investigation of land cover dynamics as demonstrated in previ-
ous studies (Zhao & Running, 2010). We acknowledge the potential 
of using high- resolution products such as the Landsat archive to 
complement our study. However, this will raise other difficulties. The 
most critical is the low frequency of available images, which makes 
it difficult to capture the peak of growth in alpine environments, and 
leads to large uncertainties in the estimate of NDVImax. In addition, 
calculating a finer grained greening response would exacerbate the 
mismatch between the spatial scale of remote sensing products and 
that of drivers of changes, especially climate (Randin et al., 2020). 
For these reasons, we believe that high- resolution remote sensing 
data would be more appropriate to examine the responses of spe-
cific habitats or sites for which ground- truth datasets are available. 
Similarly, the utilization of aerial photograph archives has an enor-
mous, yet largely unexplored, potential to relate very fine- grained 
land cover dynamics to observed greening trends (see illustrative 
examples in Figure S8).

Another difficulty of our comparative analysis of greening 
trends pertains to the wide range of vegetation cover that is in-
cluded. It is well known that NDVI exhibits a non- linear response to 
aboveground biomass and plant cover, especially for planophilous 
canopies (Myneni & Williams, 1994). The sensitivity of NDVI to an 
incremental change in biomass or cover decreases for dense cano-
pies, as does our capacity to detect a significant greenness trend in 
these contexts. Thus, one may run the risk that the spatial variability 
of greening partly reflects the different sensitivity of the method 
used to detect greening. We paid particular attention to this issue 
and removed from our analysis all pixels with high NDVImax values 
(>0.65), as we had clear indications of a saturation effect on green-
ing (Figure S2). The relationship between NDVImax and biomass or 
cover is linear in the NDVImax range we selected (Myneni & Williams, 
1994). We also performed similar random forest analyses on subsets 

of pixels exhibiting very low NDVImax value and found similar con-
clusions (Figure S6). For these reasons, we are confident that the 
saturation of NDVImax with aboveground biomass did not blur our 
assessment of greening trends in the European Alps.

Our report on widespread greening in above- treeline ecosys-
tems of the Alps is consistent with previous studies on arctic and 
alpine ecosystems (Berner et al., 2020; Ju & Masek, 2016; Krakauer 
et al., 2017; Xie et al., 2020). As in other cold parts of the Earth, 
high- elevation ecosystems in the Alps have experienced a more pro-
nounced warming than lowlands (Palazzi et al., 2019; Pepin et al., 
2015) and, not surprisingly, these temperature- limited ecosystems 
are benefitting from this increased temperature. However, and by 
comparison to a recent report from the Arctic (Berner et al., 2020), 
we found very few significant browning trends. A plausible expla-
nation is that all regions of the Alps have experienced warmer sum-
mers, albeit to varying degrees, over the last decades (Figure S9). 
This led us to consider that, at least for the Alps, the knowledge gap 
is less about the detection of significant greening trends than it is 
about the causes of its spatial variability in a warmer climate. Our 
study provides new perspectives on this matter, given that we un-
ravelled the pivotal role of the anomaly of NDVImax to capture part 
of this greening complexity. Ecosystems exhibiting a lower NDVImax 
than expected given the topography, that is a negative anomaly, 
have been the most responsive over the last two decades, and this is 
the reason why we observe today a reduced dispersion of NDVImax 
values for a given elevation × DAH compared to the years 2000 
(Figure 4b) as well as reduced regional heterogeneity (Figure 2). We 
can refer to this trend as a catching- up phenomenon, and we assert 
that it is the most important facet of the ongoing greening in the 
Alps.

To further understand this phenomenon, we paid particular 
attention to land cover properties using high- resolution images. 
Clearly, the presence of very sparsely vegetated surfaces— such 
as screes, talus and outcrops— is a predisposing factor to negative 
anomalies and greening (Figure 6). In this regard, our findings ex-
tend to a broader scale conclusions that were drawn from more 
localized studies (Carlson et al., 2017). Increasing vegetation cover 
in initially sparsely vegetated areas has been documented through 
long- term surveys (Rixen et al., 2014; Steinbauer et al., 2018) and 
remote sensing (Carlson et al., 2017). Noticeably, several reports 
have underlined the preferential expansion of tall shrubs and trees 
on screes and debris compared to nearby grasslands. In addition 
to forest ingrowth caused by land- use abandonment, this upward 
shift of trees is the other dimension of tree expansion documented 
in the Alps (Gehrig- Fasel et al., 2007; Vittoz, Rulence, et al., 2008), 
and diffuse treelines can be highly responsive to climate warming 
(Harsch et al., 2009). Forest dynamics at the treeline have also been 
influenced by the constant decline in pastoralism and the related 
human activities due to the land abandonment since the Industrial 
Revolution (1850), making it difficult to disentangle climate influ-
ence and human impacts (Motta & Nola, 2001). In the southern part 
of the Alps, these dynamics occur well above the treeline, which 
is mainly constituted by the European larch (Larix decidua L.) and 
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the stone pine (P. cembra L.). For example, the systematic survey of 
alpine ridges and cliffs in the south- western Alps led to the obser-
vation of isolated individuals or stands of P. cembra at very high ele-
vation (e.g. >3000 m; André et al., 2020). This is consistent with the 
hypothesis that the upward shift of the treeline may be more pro-
nounced in the inner part of the Alps where trees take advantage 
of the more continental, warmer and drier, climate (Körner, 1999). 

Our study did not allow to precisely relate tree cover dynamics with 
greening because of the coarse resolution and the focus on high- 
elevation sites. Nonetheless, we noticed that the greening trends 
are more accentuated on north- facing slopes that are generally 
more forested and more densely covered by heathlands than south-
ern aspects. Further studies should associate the different magni-
tudes of increase in NDVImax to well- documented colonization of 

F I G U R E  6  Relationships between land cover, NDVImax anomalies and greenness trends. We randomly selected 100 pixels (500- m 
resolution) within three data subsets exhibiting negative, null and positive NDVImax anomalies (see Figure S7) and visually photointerpreted 
land cover using very high- resolution Google Earth imagery. Cover of screes/outcrops (a) and grasslands (b) per class of NDVImax anomaly. 
NDVImax slopes (mean ± SE) for each class of NDVImax anomaly distinguishing the cover of screes/outcrops (c) and grasslands (d). Results of a 
post hoc Tukey tests are denoted with letters. Different lower case letters indicate a significant (p < .05) difference within NDVImax anomaly 
class. Different upper case letters indicate a significant (p < .05) difference between NDVImax anomaly class. NDVI, Normalized Difference 
Vegetation Index
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pioneer shrubs and trees. Our mapping of hotspots and coldspots 
of greening can provide the foundations for such an investigation 
coupling remote sensing and plant population models.

Another ecological dynamic that is consistent with our findings 
is the increasing cover of dwarf shrub— mainly Ericaceous species— in 
north- facing grasslands. Expanding low shrub cover in recent de-
cades has been reported in the central Italian Alps at elevations up 
to 2500 m (Cannone et al., 2007). Coupled with climate change, 
the transition from an agro- pastoral socio- economic model to an 
economy based on tourism and skiing has enabled a pronounced 
expansion of trees and shrubs into mountain grasslands in numer-
ous locations throughout the Alps since the 1950s, including, for 
example, the Chamonix valley (unpublished data). In addition to the 
expansion of woody vegetation, increasing grass cover in sparsely 
vegetated areas is probably contributing to the observed trends, 
both in the context of screes and talus as well as glacier forelands in 
the wake of glacier retreat (Mainetti et al., 2021).

Our study allowed for distinction between external drivers of 
greening such as climate and predisposing factors that pertain to 
the initial state of the responding system. Overall, the regional- 
scale variability of the greenness response did not strongly reflect 
spatial variation in climate change. Several reasons may explain 
this phenomenon. First, the climate data we used may be poor 
predictors because they fall short to capture surface conditions 
in high- elevation complex terrain. There are a limited number of 
weather stations above 2000 m in the Alps, and some variables like 
precipitation are notoriously difficult to model along topographical 
gradients (Frei & Isotta, 2019; Vionnet et al., 2019). Second, plant 
growth and community dynamics primarily respond to fine- scale 
thermal and moisture regimes that depend on landforms and soil 
factors (Giaccone et al., 2019; Liberati et al., 2019; Matteodo et al., 
2016; Suding et al., 2015), and these factors are not accounted for 
in continental- scale gridded data sets. Third, high- elevation eco-
systems may respond to different temporal scales of climate such 
as extreme events or past climate shifts. For example, previous 
studies have underlined the positive response of alpine primary 
productivity to heat waves (Corona- Lozada et al., 2019; Jolly et al., 
2005). There is also strong evidence that the most significant rise 
of temperature in the Alps occurred in the late 1980s (EEA, 2009), 
that is a decade before the start of the MODIS observations. It is 
possible that these particularly favourable years lead to massive 
plant recruitment and that we are tracking the consequences of 
these events years later.

An example of a physical variable that we can track at the pixel 
scale is the green- up date, which strongly depends on the first snow 
free date. At first glance, our findings are counter- intuitive as the 
likelihood of greening is predominantly associated with a delayed 
green- up date (Figure 4), as illustrated by the situation in the south- 
western Alps and the south- central Alps (Figure S10). Using the 
regional climate re- analysis available for the French Alps, we con-
firmed that the positive trend for the green- up date is consistent 
with delayed snow melt- out during the last 20 years especially in the 
southernmost ranges and above 2000 m (Figure S11). A significant 

decrease in snow melt- out dates in the 1980s and 1990s has been 
reported, mostly for sites below 2000 m (Durand et al., 2009; Klein 
et al., 2016; Matiu et al., 2021). Recent reports highlighted that these 
trends tend to vanish in the recent period, especially at high eleva-
tion (Matiu et al., 2021; Vorkauf et al., 2021). In line with these find-
ings, there is evidence that high- elevation sites in the European Alps 
have experienced an increase in precipitation over the last decades 
(Avanzi et al., 2020; Napoli et al., 2019). We hypothesize that the 
combination of snowy winters and warm summers may be particu-
larly favourable for alpine vegetation, especially where vacant niches 
are available for recruitment. This was suggested by Corona- Lozada 
et al. (2019) who showed that among the four main heat waves that 
hit the Alps in the last 20 years, the only one that did not translate 
into increased productivity was that of 2015 because a strong water 
deficit coincided with increased temperature. Recent work also in-
dicated that earlier snow melt can be detrimental to the growth of 
Rhododendron ferrugineum shrubs that preferentially occur on north- 
facing slopes (Francon et al., 2020). It is therefore plausible that a 
delayed snow melt ameliorates the summer soil water balance and 
acts synergistically with warm summer temperatures to boost plant 
productivity and colonization, especially on north- facing slopes that 
may previously have been too cold to support dense vegetation 
cover. Further studies are needed to confirm that this association be-
tween prolonged snow cover and greening is not simply coincidental 
but is reflecting ecological mechanisms that are beneficial to plant 
recruitment and growth.

Finally, our findings call into question whether changes in pastoral 
management may have contributed to the negative NDVImax anom-
alies and more generally to the contrasting regional greening trends. 
Unfortunately, consistent long- term data on mountain livestock 
systems are not available at the scale of the European Alps. A socio- 
economic analysis led Tappeiner et al. (2008) identified regions of the 
European Alps where agriculture has receded in recent years. Most 
of the Italian Alps and the North- easternmost Austrian Alps were de-
scribed as ‘forgotten rural areas’ experiencing sharp declines in agri-
culture, which demonstrates substantial spatial consistencies with our 
delineation of greening hotspots. However, the analysis aggregated 
many different socio- economic variables at the scale of administrative 
districts, and it was not possible to include it in our analysis of the driv-
ers of greening. There is certainly no simple relation between greening 
trends and changes in agricultural practices. For example, there has 
been a remarkable resilience of mountain livestock farming systems in 
the southern part of the French Alps, which is a greening hotspot, and 
this was observed despite many adverse factors such as demography, 
poor profitability, extreme events and return of the large predators 
(Hinojosa et al., 2016). Recent trends even point towards an increas-
ing demand for high- elevation pastures to overcome the detrimental 
effects of droughts in lowlands and southernmost mountain ranges, 
leading shepherds to bring their flocks to high- elevation pastures for 
extended summer periods (Nettier et al., 2010). The greening trends 
we have documented here may further encourage such practices. This 
highlights that livestock farming systems cannot be solely envisaged as 
potential drivers of greening trends but that pastoral practices will also 
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have to adapt to the changing productivity and spatial distribution of 
mountain pastures (Jager et al., 2020).

5  |  CONCLUSION

In summary, the uplands of the European Alps have undergone wide-
spread albeit non- uniform greening over the last two decades. High- 
elevation ecosystems have positively responded to ongoing summer 
warming with varying degrees of sensitivity. This conclusion is sup-
ported by the importance of predisposing factors such as the NDVImax 
anomaly, that is an abnormally low initial greenness, which explains a 
substantial portion of the spatial variability of greening. Sparsely veg-
etated ecosystems on north- facing slopes and experiencing prolonged 
snow cover duration are the most highly responsive to ongoing warm-
ing, possibly because the positive effect of increased temperature is 
not dampened by limiting water supply and density- dependent plant 
competition. Our findings call for further studies examining why cer-
tain areas of the European Alps exhibit negative NDVImax anomalies 
and whether this determines specific ecological mechanisms under-
pinning observed greening trends.
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